首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3200篇
  免费   662篇
  国内免费   214篇
化学   2828篇
晶体学   21篇
力学   101篇
综合类   26篇
数学   820篇
物理学   280篇
  2024年   1篇
  2023年   34篇
  2022年   33篇
  2021年   54篇
  2020年   151篇
  2019年   111篇
  2018年   96篇
  2017年   71篇
  2016年   200篇
  2015年   202篇
  2014年   203篇
  2013年   303篇
  2012年   246篇
  2011年   276篇
  2010年   218篇
  2009年   254篇
  2008年   249篇
  2007年   193篇
  2006年   197篇
  2005年   166篇
  2004年   162篇
  2003年   163篇
  2002年   84篇
  2001年   41篇
  2000年   47篇
  1999年   52篇
  1998年   40篇
  1997年   73篇
  1996年   26篇
  1995年   19篇
  1994年   19篇
  1993年   15篇
  1992年   15篇
  1991年   9篇
  1990年   10篇
  1989年   5篇
  1988年   2篇
  1987年   5篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   6篇
  1979年   2篇
  1977年   3篇
  1969年   1篇
排序方式: 共有4076条查询结果,搜索用时 132 毫秒
51.
The chemoselective coupling of oxetanes and carbon dioxide to afford functional, heterocyclic organic compounds known as six‐membered cyclic carbonates remains a challenging topic. Here, an effective method for their synthesis relying on the use of Al catalysis is described. The catalytic reactions can be carried out with excellent selectivity for the cyclic carbonate product tolerating various (functional) groups present in the 2‐ and 3‐position(s) of the oxetane ring. The presented methodology is the first general approach towards the formation of six‐membered cyclic carbonates (6MCCs) through oxetane/CO2 coupling chemistry. Apart from a series of substituted six‐membered cyclic carbonates, also the unprecedented room‐temperature coupling of oxetanes and CO2 is disclosed giving, depending on the structural features of the substrate, a variety of five‐ and six‐membered heterocyclic products. A mechanistic rationale is presented for their formation and support for the intermediary presence of a carbonic acid derivative is given. The presented functional carbonates may hold great promise as building blocks in organic synthesis and the development of new, biodegradable polymers.  相似文献   
52.
We report a simple, highly stereoselective synthesis of (+)‐(S)‐γ‐ionone and (‐)‐(2S,6R)‐cis‐γ‐irone, two characteristic and precious odorants; the latter compound is a constituent of the essential oil obtained from iris rhizomes. Of general interest in this approach are the photoisomerization of an endo trisubstituted cyclohexene double bond to an exo vinyl group and the installation of the enone side chain through a [(NHC)AuI]‐catalyzed Meyer–Schuster‐like rearrangement. This required a careful investigation of the mechanism of the gold‐catalyzed reaction and a judicious selection of reaction conditions. In fact, it was found that the Meyer–Schuster reaction may compete with the oxy‐Cope rearrangement. Gold‐based catalytic systems can promote either reaction selectively. In the present system, the mononuclear gold complex [Au(IPr)Cl], in combination with the silver salt AgSbF6 in 100:1 butan‐2‐one/H2O, proved to efficiently promote the Meyer–Schuster rearrangement of propargylic benzoates, whereas the digold catalyst [{Au(IPr)}2(μ‐OH)][BF4] in anhydrous dichloromethane selectively promoted the oxy‐Cope rearrangement of propargylic alcohols.  相似文献   
53.
Removal of the chloride ligand from [AuCl( 1 ‐κP)] ( 2 ) containing a P‐monodentate 1′‐(diphenylphosphanyl)‐1‐cyanoferrocene ligand ( 1 ), by using silver(I) salts affords cationic complexes of the type [Au( 1 )]X, which exist either as cyclic dimers [Au( 1 )]2X2 ( 3 a , X=SbF6; 3 c , X=NTf2) or linear coordination polymers [Au( 1 )]nXn ( 3 a′ , X=SbF6; 3 b′ , X=ClO4), depending on anion X and the isolation procedure. As demonstrated for 3 a′ , the polymers can be readily cleaved by the addition of donors, such as Cl?, tetrahydrothiophene (tht) or 1 , giving rise to the parent compound 2 , [Au(tht)( 1 ‐κP)][SbF6] ( 5 a ) or [Au( 1 ‐κP)2][SbF6] ( 4 a ), respectively, of which the last two compounds can also be prepared by stepwise replacement of tht in [Au( 1 ‐κP)2][SbF6]. The particular combination of a firmly coordinated (phosphane) and a dissociable (nitrile) donor moieties renders complexes 3/3′ attractive for catalysis because they can serve as shelf‐stable precursors of coordinatively unsaturated AuI fragments, analogous to those that result from the widely used [Au(PR3)(RCN)]X catalysts. The catalytic properties of the Au‐ 1 complexes were evaluated in model annulation reactions, such as the synthesis of 2,3‐dimethylfuran from (Z)‐3‐methylpent‐2‐en‐4‐yn‐1‐ol and oxidative cyclisation of alkynes with nitriles to produce 2,5‐disubstituted 1,3‐oxazoles. Of the compounds tested ( 2 , 3 a′ , 3 b′ , 3 a , 4 a and 5 a ), the best results were consistently achieved with dimer 3 c , which has good solubility in organic solvents and only one firmly bound donor at the gold atom. This compound was advantageously used in the key steps of annuloline and rosefuran syntheses.  相似文献   
54.
The catalytic hydration of benzonitrile and acetonitrile has been studied by employing different arene–ruthenium(II) complexes with phosphinous (PR2OH) and phosphorous acid (P(OR)2OH) ligands as catalysts. Marked differences in activity were found, depending on the nature of both the P‐donor and η6‐coordinated arene ligand. Faster transformations were always observed with the phosphinous acids. DFT computations unveiled the intriguing mechanism of acetonitrile hydration catalyzed by these arene–ruthenium(II) complexes. The process starts with attack on the nitrile carbon atom of the hydroxyl group of the P‐donor ligand instead of on a solvent water molecule, as previously suggested. The experimental results presented herein for acetonitrile and benzonitrile hydration catalyzed by different arene–ruthenium(II) complexes could be rationalized in terms of such a mechanism.  相似文献   
55.
Transition‐metal‐catalyzed radical reactions are becoming increasingly important in modern organic chemistry. They offer fascinating and unconventional ways for connecting molecular fragments that are often complementary to traditional methods. In particular, reductive radical additions to α,β‐unsaturated compounds have recently gained substantial attention as a result of their broad applicability in organic synthesis. This Minireview critically discusses the recent landmark achievements in this field in context with earlier reports that laid the foundation for today′s developments.  相似文献   
56.
A molybdenum–dithiolene–oxo complex was prepared as a model of some active sites of Mo/W‐dependent enzymes. The ligand, a quinoxaline–pyran‐fused dithiolene, mimics molybdopterin present in these active sites. For the first time, this type of complex was shown to be active as a catalyst for the photoreduction of protons with excellent turnover numbers (500) and good stability in aqueous/organic media and for the electroreduction of protons in acetonitrile with remarkable rate constants (1030 s?1 at ?1.3 V versus Ag/AgCl). DFT calculations provided insight into the catalytic cycle of the reaction, suggesting that the oxo ligand plays a key role in proton exchange. These results provide a basis to optimize this new class of H2‐evolving catalysts.  相似文献   
57.
Diiminopyrrolide copper alkoxide complexes, LCuOR (OR1=N,N‐dimethylamino ethoxide, OR2=2‐pyridyl methoxide), are active for the polymerization of rac‐lactide at ambient temperature in benzene to yield polymers with Mw/Mn=1.0–1.2. X‐ray diffraction studies showed bridged dinuclear complexes in the solid state for both complexes. While LCuOR1 provided only atactic polylactide, LCuOR2 produced partially isotactic polylactide (Pm=0.7). The difference in stereocontrol is attributed to a dinuclear active species for LCuOR2 in contrast to a mononuclear species for LCuOR1.  相似文献   
58.
Palladium(II) acetate is readily converted into [Pd32‐OH)(OAc)5] ( 1 ) in the presence of water in a range of organic solvents and is also slowly converted in the solid state. Complex 1 can also be formed in nominally anhydrous solvents. Similarly, the analogous alkoxide complexes [Pd32‐OR)(OAc)5] ( 3 ) are easily formed in solutions of palladium(II) acetate containing a range of alcohols. An examination of a representative Wacker‐type oxidation shows that the Pd‐OH complex 1 and a related Pd‐oxo complex 4 can be excluded as potential catalytic intermediates in the absence of exogenous water.  相似文献   
59.
Ethers are of fundamental importance in organic chemistry and they are an integral part of valuable flavors, fragrances, and numerous bioactive compounds. In general, the reduction of esters constitutes the most straightforward preparation of ethers. Unfortunately, this transformation requires large amounts of metal hydrides. Presented herein is a bifunctional catalyst system, consisting of Ru/phosphine complex and aluminum triflate, which allows selective synthesis of ethers by hydrogenation of esters or carboxylic acids. Different lactones were reduced in good yields to the desired products. Even challenging aromatic and aliphatic esters were reduced to the desired products. Notably, the in situ formed catalyst can be reused several times without any significant loss of activity.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号